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Single-case research comprises a set of designs and methods for evaluating the effects of in-
terventions, practices, or programs on individual cases, through comparison of outcomes mea-
sured at different points in time. Although there has long been interest in meta-analytic tech-
nique for synthesizing single-case research, there has been little scrutiny of whether proposed
effect sizes remain on a directly comparable metric when outcomes are measured using differ-
ent operational procedures. Much of single-case research focuses on behavioral outcomes in
free-operant contexts, which may be measured using a variety of different direct observation
procedures. This article describes a suite of effect sizes for quantifying changes in free-operant
behavior, motivated by an alternating renewal process model that allows measurement com-
parability to be established in precise terms. These effect size metrics have the advantage of
comporting with how direct observation data are actually collected and summarized. Effect size
estimators are proposed that are applicable when the behavior being measured remains stable
within a given treatment condition. The methods are illustrated by two examples, including
a re-analysis of a systematic review of the effects of choice-making opportunities on problem
behavior.
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Single-case research comprises a set of designs and meth-
ods for evaluating the effects of interventions, practices, or
programs on individual cases. Empirical single-case research
appears in many areas of psychology and education, partic-
ularly in special education, school psychology, clinical psy-
chology, psychotherapy, social work, and applied behavior
analysis (e.g. Horner et al., 2005; Kazdin, 2011; Kennedy,
2004). Single-case research emphasizes individual change,
focusing on individual-specific effects of intervention that are
identified through comparison of outcomes measured repeat-
edly on the same case at different points in time. Though
most single-case studies actually include multiple cases, it
is typical to report separate results for each case, with little
emphasis on overall summaries across cases.

Despite this idiographic orientation, there has long been
interest in meta-analytic synthesis as an approach for sum-
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marizing and generalizing from single-case studies. Just as
other fields began to take growing interest in meta-analysis,
Gingerich (1984) argued that synthesis of single-case re-
search could improve the precision of individual treatment
effect estimates, bolster the internal validity of single studies
through replication, and provide a means for studying vari-
ation in treatment effects and generalizing from a collection
of studies. Others noted the drawbacks of excluding single-
case studies from comprehensive syntheses (e.g., Allison &
Gorman, 1993). In response, several effect size statistics and
meta-analytic approaches have been developed specifically
for single-case research (e.g., Busk & Serlin, 1992; Center,
Skiba, & Casey, 1985; Scruggs, Mastropieri, & Casto, 1987).
With the more recent and growing emphasis on evidence-
based practice, fields that use single-case research have ar-
ticulated standards of scientific evidence and attempted to
codify synthesis methods (Chambless & Ollendick, 2001;
Gast, 2010; Horner et al., 2005; Kratochwill & Stoiber, 2002;
Odom et al., 2005). As interest has grown, systematic re-
views and syntheses of single-case research now appear with
increasing frequency (Maggin, O’Keeffe, & Johnson, 2011).
However, there is still little consensus regarding appropriate
statistical methods for such synthesis. Even the most basic
question of what effect size metric to use for meta-analysis
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remains unresolved, though proposals have proliferated (for
reviews of current proposals, see Beretvas & Chung, 2008;
Wolery, Busick, Reichow, & Barton, 2010).

Effect sizes are the the basic units of analysis in a meta-
analysis, and operational definition of an effect size metric
is one of the central questions in any quantitative research
synthesis (Cooper, 2009). The choice of effect size metric
involves, implicitly or explicitly, an assumption about the
comparability of results from different studies that may use
various participant inclusion criteria, treatment procedures,
outcome measurement instruments, or experimental designs
(Hedges, 2008). To account for differences in measurement
instruments, it is desirable that the magnitude of an effect
size not depend strongly on specific or idiosyncratic features
of the instrument; I will call effect sizes that have this prop-
erty measurement-comparable. Without measurement com-
parability, it becomes very difficult to draw meaningful infer-
ences from averages across or comparisons between effect
size estimates because true variation in magnitude is con-
founded by differences in measurement scales.

Issues of measurement-comparability have received scant
attention in the context of single-case research. Two of the
main classes of effect sizes proposed for use in single-case
research are standardized mean differences and non-overlap
measures (Beretvas & Chung, 2008; Wolery et al., 2010).
Busk and Serlin (1992) proposed a standardized mean dif-
ference effect size where the standardization is based on the
within-case sample variance; some have argued that stan-
dardizing by the within-case variance makes the resulting ef-
fect sizes measurement-comparable (Hershberger, Wallace,
Green, & Marquis, 1999; Van den Noortgate & Onghena,
2003). However, this claim is justified only by analogy to
the standardized mean difference metric used in between-
subjects research, rather than by any explicit model. The
second class of effect sizes includes the percentage of non-
overlapping data (Scruggs et al., 1987) and a variety of other
effect sizes connected to robust statistics and non-parametric
tests (Parker, Vannest, & Davis, 2011). Parker, Vannest, and
Davis (2011) and Scruggs and Mastropieri (2012) argue that
non-overlap measures permit direct comparison across mea-
surement procedures because they are all on a scale ranging
from O to 100%. Again, the claim of measurement compara-
bility is not motivated by any explicit model.

Another limitation of current effect size proposals for
single-case research is the lack of specific attention to mea-
surement scales.! Effect sizes in the family of standardized
mean differences are appropriate for interval-scale measure-
ments and are often employed in connection with normally
distributed outcome measures, yet many of the most common
measurement procedures used in single-case research pro-
duce measurements that are not interval scaled or normally
distributed. Non-overlap measures seek to avoid making any
sort of distributional assumptions; consequently, it is largely

unknown whether and how these measures are sensitive to
variations in the measurement scales.

In this paper, I propose several new effect size mea-
sures for single-case research that attend closely to issues
of measurement-comparability and scaling. All of the ef-
fect sizes are defined in terms of a common underlying
model, which permits their measurement comparability (or
lack thereof) to be established in precise terms. The model
also comports closely with commonly used measurement
procedures, leading to effect sizes that are more appropri-
ate for the scales of measurements produced by these proce-
dures.

Rather than addressing the comparability of any and all
outcome measurement operations used in single-case re-
search, the scope of this investigation is limited to one par-
ticular class: direct observations of behavior in free-operant
contexts. Free-operant contexts are defined by a setting or
time-frame in which behaviors are free to occur at any time,
without prompting or restriction by the investigator.? For in-
stance, an investigator might observe the bullying behavior
of a child during lunch recess (e.g. Ross & Horner, 2009),
recording incidents as they occur over the course of the
child’s natural interactions with his peers.

Focusing only on free-operant behavior is appropriate for
three reasons. First, directly observed free-operant behav-
ior is the most common class of outcome measures used
in single-case research (Kazdin, 2011; Pustejovsky, 2013);
thus, even methods specialized to this outcome domain will
still be widely applicable. Second, several past syntheses
of single-case research have employed similar scope lim-
itations, examining only studies of free-operant behavior
(e.g., Gage, Lewis, & Stichter, 2012; Hart & Banda, 20009;
Shogren, Faggella-Luby, Bae, & Wehmeyer, 2004) or draw-
ing distinctions between outcome domains at the analysis
stage (e.g., Machalicek et al., 2008). Finally, a measurement
comparability model that is applicable across multiple out-
come domains would almost certainly involve stronger and
more tenuous assumptions than a model for a single domain.
This initial study of measurement-comparable effect sizes
therefore develops methods for a single, commonly used do-
main, where a relatively plausible set of modeling assump-
tions can be articulated and studied.

'T am aware of only one exception: Shadish, Kyse, and Rind-
skopf (2013) consider binomial models for proportion data and
poisson models for count data. However, their focus is purely on
developing models for individual single-case studies; they do not
consider issues of effect size definition or measurement compara-
bility.

>The behavior-analytic tradition defines free-operant behavior
slightly differently, as behavior stimulated by its consequences,
rather than by antecedent prompts or cues (Johnston & Penny-
packer, 1993, p. 366).
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Measurement procedures

In order to develop measurement-comparable effect sizes,
it is important to understand the range of operational proce-
dures across which comparisons might be made. An array
of procedures are used to measure behavior in free-operant
contexts; four of the most common are event counting, con-
tinuous recording, momentary time sampling, and partial in-
terval recording.® Using event counting, the observer notes
the start of each occurrence of a behavior, either by recording
the time of each occurrence or simply by tallying the number
of occurrences. Data from an observation session are often
summarized by the number of occurrences per fixed unit of
time.

Using continuous recording, the observer notes the begin-
ning and end of each instance of a behavior. Data from an
observation session are often summarized by the proportion
of session time during which a behavior is observed.

Using momentary time sampling, the observer notes
whether a behavior is or is not occurring at each of a set of
fixed moments in time, which are typically equally spaced
over the course of a session. Data from an observation ses-
sion are often summarized by the proportion of moments at
which the behavior is observed.

Using partial interval recording, an observation session
is divided into short time intervals, sometimes with a short
break in between each interval to allow time for recording
observations. The observer scores each interval according to
whether the behavior is observed; an interval receives a score
of one if the behavior occurs at any point during the interval,
and otherwise receives a score of zero.* Data from an obser-
vation session are typically summarized by the proportion of
intervals receiving a score of one (or equivalently, the mean
score across the intervals).

In practice, these different procedures can be applied to
measure very similar constructs. For example, Shogren et al.
(2004) conducted a systematic review of single-case studies
examining the effects of providing choice-making opportu-
nities on the problem behavior of disabled children. The au-
thors identified 13 studies meeting search criteria, including
a total of 32 individual cases. The primary outcome for each
case was problem behavior, but the procedures used to mea-
sure problem behavior varied across cases and studies. Ta-
ble 1 reports the number of studies and number of individual
cases where each recording procedure was employed. For the
majority of studies and cases, problem behavior was mea-
sured using interval recording (following a partial interval
recording procedure in all but one case). The next most com-
monly used method was continuous recording, applied with
five cases from a single study by Romaniuk et al. (2002).>
This systematic review, which attempted to synthesize stud-
ies using heterogeneous operational procedures for measur-
ing a common construct, provides further motivation for a
careful examination of measurement comparability.

Table 1
Measurement procedures used in studies included in Shogren
etal. (2004)

Procedure Studies Cases
Event counting 3 3
Continuous recording 1 5
Momentary time sampling 1 1
Partial interval recording 7 19
Other 3 4
Total? 13 32

4Some studies used more than one measurement procedure.

Modeling approach

To study the comparability of these different measurement
procedures, I use a model for the free-operant behavior that
is observed over the course of an observation session, or
what is sometimes called the “behavior stream” (Hartmann
& Wood, 1990; Schoenfeld, 1972). By defining the targets
of measurement in terms of the behavior stream, the model
distinguishes clearly between the quantities of interest (the
parameters of the behavior stream) and the procedures used
to measure those quantities—much as a psychometric mea-
surement model separates the definition of true scores from
the particular set of items used to measure those scores. The
model therefore establishes a common basis for understand-
ing the various procedures that can be applied to record ob-
servations.

The approach to modeling the behavior stream follows
Rogosa and Ghandour (1991), who used a class of stochas-
tic models called alternating renewal processes to study the
reliability of different behavioral observation procedures.
Though complex, this model is useful because it is based on a
plausible description of the behavior being observed and the

3Detailed surveys of measurement methods are available from
several sources, including Ayres and Gast (2010) or Kahng, Ingvars-
son, Quigg, Seckinger, and Teichman (2011). Terminology varies
somewhat across authors. My presentation follows the terminology
and the main outline of Ayres and Gast (2010).

4 Another procedure known as whole interval recording is struc-
tured in the same way as partial interval recording, but the rule for
scoring each interval is different. With whole interval recording,
an interval is scored as a one if the behavior occurs for the entire
active interval, and is otherwise scored as a zero. Whole interval
recording captures the same information as partial interval record-
ing applied to the absence of a behavior rather than its presence.
Both because of this structural relationship and because it is much
less common than partial interval recording, I do not discuss whole
interval recording further.

SFour cases were measured using procedures that I have catego-
rized as “other.”” All of these cases were measured using esoteric
procedures that were highly adapted to the individual’s context.
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process through which measurements are recorded. Further-
more, Rogosa and Ghandour (1991) illustrated that the prop-
erties of behavioral observation data differ markedly from
what one would predict based on models for interval-scale
measures and normally distributed errors. Effect sizes based
on this model for the behavior stream may therefore lead to
substantially different conclusions than previous proposals in
the literature. In the following sections, I refer to the alter-
nating renewal process model as the within-session model
because it has to do with measurements made and recorded
during the course of a single observation session.

In addition to the within-session model, a between-session
model is needed to describe changes in behavior across sub-
sequent observation sessions and phases of the design. I
will consider only the simplest possible such model, assum-
ing that the behavior stream process is stable within a given
phase (lacking time trends), and therefore that repeated mea-
surements are identically distributed and uncorrelated. This
simplistic model is justified for several reasons. The assump-
tion that the pattern of behavior does not have time trends is
employed for simplicity, in order to more clearly define ef-
fect sizes that quantify changes between phases. Extensions
to models with time trends are possible (Pustejovsky, 2013)
and will be explored further in future work. The assumption
that repeated measurements are uncorrelated runs against the
current consensus that statistical models for single-case stud-
ies should allow for auto-correlation (Horner, Swaminathan,
Sugai, & Smolkowski, 2012; Wolery et al., 2010). How-
ever, auto-correlation is not a clear-cut concept in models
with non-normal error distributions, and introducing it would
add several layers of complication. The focus of this paper
is therefore on models without auto-correlation. I comment
further on these issues in the discussion section.

The remainder of this paper is organized as follows. In
the next section, I outline a within-session model of the ma-
jor measurement procedures for direct behavioral observa-
tion in free-operant contexts. I then define several different
effect size measures for quantifying changes in free-operant
behavior and note the relationships among the different mea-
sures. Next, I describe simple moment estimators that can
be applied when behavior is stable within phases and re-
peated measurements are uncorrelated. To demonstrate the
proposed methods, I re-analyze a single study by Romaniuk
et al. (2002) and a systematic review by Shogren et al. (2004).
I conclude by discussing the choice between alternative ef-
fect sizes, noting limitations, and highlighting avenues for
future work.

Within-session model

In a typical single-case study, only one measurement per
observation session is reported (often by plotting it in a
single-case graph), and it is only this information that will
be available for secondary meta-analysis. However, a much

more fine-grained model is needed in order to establish the
measurement comparability of different procedure—one that
describes the entire sequence of behaviors that occur over the
course of an observation session. I first describe a paramet-
ric model for the behavior stream, known as the equilibrium
alternating renewal process model. I then examine the im-
plications of the model for each of the main procedures for
measuring free-operant behavior.

Equilibrium alternating renewal process

The equilibrium alternating renewal process (ARP) is a
model for the sequence of behavioral events that occur dur-
ing the course of an observation session. It assumes that these
events occur singly and sequentially—that is, one event must
end before the next event begins, with some time in between
where no event is occurring. Some notation is needed for de-
scribing such a sequence of events. Let L denote the length
of the observation session. Denote the duration of the first
event as A, the duration of the second event as A,, and the
duration of event u as A,, for u = 3,4,5,.... Let By denote
the length of time until the first behavioral event, with By = 0
if event 1 is occurring at the beginning of the observation pe-
riod. Finally, let B, denote the length of time between the
end of event u and the beginning of event u+ 1, or what I will
call the u™ interim time, for u = 1,2,3, .... In this notation,
the values By, Ay, B1, A3, By, Az, B, ... provide a quantitative
description of the behavior stream observed during a given
session. Figure 1 depicts the behavior stream graphically.

To make this notation more concrete, consider the exam-
ple of a school psychologist who is interested in measuring
a child’s out-of-seat behavior during math class. During a
given session, the psychologist observes the times at which
the child leaves her seat and times at which she returns—it is
these observations that comprise the behavior stream. The
interim time By is the length of time from the beginning of
math class until the child first leaves her seat; the event du-
ration A is the length of time that the child is out of her seat
on the first occasion of her getting up; B; is the length of
time from when she first returns to when she gets up again;
A, is the length of time she is out of her seat on the second
occasion, and so forth.

In the ARP model, the length of each behavioral event
and the length of each interim time are treated as random
quantities, each following some probability distribution. The
model has four key assumptions.® First, event durations
Aj,Aj,As, ... are assumed to be identically distributed ran-
dom quantities with mean u and cumulative distribution
function F(t;u).” The parameter u thus represents the av-
erage length of each behavioral event, which is strictly pos-

®For an introduction to renewal process models, see Cox (1962)
or Kulkarni (2010, Chp. 8).

"For a random variable A with mean y, the cumulative distribu-
tion function F(z; u) gives the probability that A is less than or equal
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Figure 1. Organization of the behavior stream. The thin grey line represents time during an observation session, ranging from
0 to L. The thick black lines represent behavioral events. Behavioral event durations are labelled A, A, As. Interim times are

labelled B(), B] . Bz, B3.

itive and finite. Second, interim times Bi, By, B3, ... are as-
sumed to be identically distributed random quantities with
mean A and cumulative distribution function G(#; 1). The pa-
rameter A thus represents the average interim time, which is
also strictly positive and finite. Third, all interim times and
all event durations are assumed to be mutually independent.
This means that the length of a given event is not influenced
by the length of previous events, or by how long it has been
since the last event ended. Fourth, the process is assumed to
be aperiodic and in equilibrium. This final assumption means
that events are no more or less likely to occur at the begin-
ning of a session than in the middle or at the end; instead, the
probability that an event is occurring any given point in time
during the observation session remains constant.

Note that the first and second assumptions are not specific
about the precise form of the probability distributions for the
event durations and interim times. Instead, the ARP can en-
compass a very wide variety of parametric distributions. For
example, event durations might be log-normally distributed
while interim times are exponentially distributed, or event
durations and interim times could both follow gamma distri-
butions. The ARP applies even if events have a fixed duration
(i.e., each event lasts 4 s) so long as the distribution of interim
times is random. As will be seen, this general formulation
of the ARP is useful for understanding the properties of the
main measurement procedures.

In the ARP, the main parameters that describe the behavior
being observed are the mean event duration ¢ and the mean
interim time A. In addition to these parameters, two other
characteristics of the behavior will also be of interest, both of
which are functionally related to ¢ and A. First, the incidence
of the behavior, denoted ¢, is the average rate at which new
events occur; incidence is related to the mean event duration
and mean interim time by { = 1/(1 + ). Second, the preva-
lence of the behavior, denoted ¢, is the overall proportion
of time that behavioral events occur; prevalence is related to
mean event duration and mean interim time by ¢ = p/(u+A).

Implications for measurement procedures

Any of the main procedures could in principle be applied
to the same behavior stream, generating a different summary
measurement. The ARP model for the behavior stream pro-
vides a common basis for understanding the properties of and

relationships between the measurements generated by differ-
ent procedures. After introducing some further notation, I
provide the expected value of each measurement procedure,
expressed in terms of the parameters of the behavior stream.
Derivations and further technical details regarding these ex-
pressions are given in the Appendix.

Using event counting, the observer notes the beginning of
each new event. The summary measurement generated by
this procedure is the total number of new events that begin
during the observation session; I denote it as Y’ E 1n the ear-
lier example, Y £ is the number of times that the child leaves
her seat during the course of the session. Under the ARP, the
expected value of an event counting measurement is

E(YE) = (L. (1)

Intuitively, the expected number of events during the session
is equal to the average rate of events per time unit, multiplied
by the length of the session. The expectation does not depend
on the specific form of the event duration or interim time dis-
tributions, a property which makes event counting data quite
simple to interpret.

Using a continuous recording procedure, the observer
notes the beginning and end of each behavioral event. The
summary measurement from a continuous recording proce-
dure is calculated as the proportion of session time during
which the behavior occurs; I denote it as Y. In the earlier
example, Y€ is the proportion of time that the child is out of
her seat during the course of that particular math class. Un-
der the ARP, the expected value of a continuous recording
measurement is equal to prevalence:

E(YC) = ¢. (2)

Intuitively, the expected proportion of time that events oc-
cur during a specific session is equal to the long-run average
proportion of time that events occur. Like event counting, the
expectation of continuous recording data does not depend on
the specific form of the event duration or interim time distri-
butions, which makes interpretation simple.

Using a momentary time sampling procedure, the ob-
server divides the session up into many equally-spaced in-
tervals and notes the presence or absence of a behavior at

to a given value ¢.
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the moment each interval ends. Let K denote the number of
intervals, so that the length of each interval is L/ K. The sum-
mary data point, which I will denote Y™, is calculated as the
proportion of these moments (out of K possible) at which the
behavior is observed. In the earlier example, suppose that the
observer uses 15 s momentary time sampling. The observer
would note whether the child is out of her seat at time 15 s, at
time 30 s, at time 45 s, etc.; Y™ would then be calculated as
the proportion of these moments at which the child is out of
her seat. Under the ARP, the expected value of a momentary
time sampling measurement is equal to prevalence:

E(r")=¢. 3)

This is true because the process is in equilibrium, and so
the probability that an event is occurring at any given mo-
ment is equal to the behavior’s prevalence. Thus, momentary
time sampling produces measurements of the same behavior
stream parameter as does continuous recording, with an ex-
pected value that does not depend on the specific form of the
event duration or interim time distributions.

In partial interval recording, an observer first divides the
session into K intervals, each of length L/K. The first ¢ time
units of each interval are devoted to observation, while the
remainder L/K —c is used for recording or resting; I call ¢ the
active interval length. During a given interval, the observer
counts a behavior as present if it occurs at any point during
the active interval. The summary data point from partial in-
terval recording, which I will denote as Y”?, is calculated the
proportion of intervals during which the behavior is observed
at any point. In the earlier example, suppose that the observer
uses ¢ = 15 sintervals, each separated by 5 s of rest time. The
observer would first record whether the child was out of her
seat at any point between O s and 15 s, then record whether
the child was out of her seat at any point between 20 s and 35
s, whether the child was out of her seat between 40 s and 55
s, etc.; Y would then be calculated as the proportion of the
intervals during which the child was out of her seat at some
point.

In contrast to the other procedures, partial interval record-
ing produces measurements that have no simple interpreta-
tion in terms of the main parameters of the ARP.? Instead,
it can be shown that the expected value of a partial interval
recording measurement is

E(YP):¢+§IC[1_G(I;/D]dt’ )
0

C

where indicates a definite integral over the interval O to

c. A det?ailed derivation can be found in the Appendix. The
perplexing implication of Equation (4) is that partial interval
recording data are sensitive to many factors, including both
prevalence and incidence, the active interval length ¢ used
in the procedure, and the specific form of the interim time

distribution G(#; A). If one interprets partial interval record-
ing measurements as upwardly biased estimates of preva-
lence, then the degree of bias will be different depending on
whether the interim times follow an exponential distribution,
a log-normal distribution, or some other distribution. As I
illustrate later, these sensitivities create difficulties for esti-
mating effect sizes from partial interval data.

Between-session model and case-level effect size
parameters

The ARP model provides a basis for understanding the re-
lationships among measurements generated by different ob-
servation procedures and consequently for establishing the
measurement-comparability of different effect sizes. This is
because effect sizes defined in terms of the parameters of the
ARP can be interpreted in terms of the data from any of the
measurement procedures, rather than being contingent on the
procedure. In this section, I propose several such effect sizes
for measuring behavioral changes, then describe the relation-
ships among them.

Before turning to the effect sizes, I first need to intro-
duce a further model for descibing multiple observation ses-
sions. The within-session ARP model describes the behavior
stream as observed on a single occasion, but single-case stud-
ies involve observing the behavior of an individual across
several sessions, under different treatment conditions. A
between-session model is needed that describes changes in
the behavior stream over this longer time frame. I will fo-
cus on a very simple model in which the behavior stream re-
mains stable from observation session to observation session
but may change under different treatment conditions.

Consider a study in which a total of n outcome mea-
surements are made using measurement procedure r, where
r = E,C,M, or P. The observed data are then Yj’., for
j = 1,...,n. To indicate the treatment condition on occasion
J, define the covariate X; for j = 1,...,n, where X; = 1 if the
case is in a treatment phase at time j and X; = O otherwise.
For the between-session model, I assume that 1) during ses-
sion j, the behavior of the case follows an equilibrium alter-
nating renewal process; 2) measurements generated during
different observation sessions are independent of each other;
and 3) the parameters of the alternating renewal process are
constant within each treatment phase. Let yy denote the av-
erage event duration and A, the average interim time during
baseline phases (when X; = 0); let u; denote the average
event duration and A; the average interim time during treat-
ment phases (when X; = 1).

Under this stable-phase model, measurement-comparable
effect sizes involve comparisons between (ug,dy) and

81t has long been recognized that interval recording data mea-
sures neither prevalence nor incidence. See for instance J. Altmann
(1974) for a discussion of the origins and arguments regarding in-
terval recording methods.
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(11, 11). A number of such comparisons are worth consid-
ering; I will describe five: the log-duration ratio, the log-
interim ratio, the log-incidence ratio, the log-prevalence ra-
tio, and the log-prevalence odds ratio. I focus on logged
ratios for two reasons. First and perhaps most crucially,
published single-case studies often describe results using
measures of percentage change (cf. Campbell & Herzinger,
2010), though they do so without any indication of sampling
uncertainty. Log-ratios are very closely related to proportion-
ate changes, and thus have the advantage of aligning to some
extent with how applied researchers already think. Second,
log-ratios are useful in a purely technical sense when they
conform to the scales of the quantities being measured and
can be defined without range restriction. All but one of the
effect size metrics range from negative infinity to positive
infinity, with zero corresponding to no change; this allows
some problems with meta-analytic models to be avoided.

Log-duration ratio and log-interim ratio

In the abstract, one of the most informative ways to quan-
tify a change in behavior would be to use separate contrasts
between each component of the ARP. For instance, the log-
duration ratio, defined as w* = In (1 /1), measures the pro-
portionate change in the average event duration; the interim
ratio, defined as w' = In (1y/A;) measures the proportionate
change in the average interim time. These two effect sizes
would be particularly useful in intervention contexts if the
experimenter’s goal is to effect change in one dimension of
the behavior but not the other, or to evaluate a detailed hy-
pothesis about the mechanism of an intervention. Unfortu-
nately, these effect sizes may only be of hypothetical inter-
est, because none of the observation procedures that I have
described yield measurements of the separate components of
duration and incidence.

Log-incidence ratio

The log-incidence ratio is defined as the log of the ratio
of a behavior’s incidence in the treatment condition to the
behavior’s incidence in the baseline condition; this can be
written either in terms of incidence or in terms of average
duration and interim times:

W =In(1/&) =In(uo + o) —In(uy + 1), (5)

where ¢y is the incidence during baseline and ¢ is the in-
cidence during treament. This effect size measures the pro-
portionate change in a behavior’s incidence; if observation
sessions are all of equal length, then the incidence ratio is
also equivalent to the log of the proportionate change in the
expected number of behaviors during a session. Event count-
ing directly measures incidence and is a very commonly used
procedure. Therefore, the log-incidence ratio should be a
very useful effect size for describing changes in behavior.

However, as a summary metric, it has the disadvantage of
not being sensitive to behavioral prevalence. Rather, an ob-
served decrease in incidence could be the result of either an
increase in average interim time or an increase in average
event duration, two possibilities which might have different
substantive implications.

Log-prevalence ratio

When a behavior has non-negligible duration, the fore-
most concern of an interventionist will often be its preva-
lence, or the overall proportion of time that it occurs. One
metric for quantifying changes in prevalence is the log-
prevalence ratio, defined as the log of the ratio of prevalence
during the treatment condition to prevalence during the base-
line condition; this can be written in terms of either preva-
lence or average duration and interim times:

w? = 1n(ﬁ) - 1n(“—') - ln( Ho ) (6)
$o Hi+ 4 Ho + Ao

where ¢ is prevalence during baseline and ¢; is prevalence
during treatment. This effect size is comparatively straight-
forward to interpret in terms of proportionate changes, as
with the other log-ratio effect sizes. Compared to the log-
incidence ratio, the log-prevalence ratio has the advantage of
being sensitive to changes in both event duration and interim
time. However, there are two inter-related drawbacks to this
effect size. First, because prevalence ranges from O to 1, the
effect size has a range that depends on the initial level: for
a given baseline prevalence ¢, the log-prevalence ratio can
never be greater than —In(¢p). Second, the log-prevalence
ratio is not symmetric with respect to how behaviors are de-
fined; re-defining prevalence as the proportion of time that
behavioral events do not occur will alter the magnitude of
the log-prevalence odds ratio, rather than only affecting the
sign. Application of the log-prevalence ratio will therefore
require establishing conventions as to how behaviors are de-
fined, such as always defining prevalence in terms of negative
or undesirable behavior.

Log-prevalence odds ratio

The log-prevalence odds ratio is an alternative metric for
quantifying changes in prevalence, and is defined as

¢1/(1 - ¢1)
¢o/(1 = ¢o)

This effect size measures proportionate change in the preva-
lence odds, or the ratio of the average event duration to the
average interim time. It is mathematically equivalent to the
difference between the log-duration ratio and the log-interim
ratio: ¥ = w* — w'. As a result, the log-prevalence odds
ratio weighs a given proportionate increase in duration as
equal to a corresponding proportionate decrease in interim

lﬂ:ln( )=1n(lll//11)—1n(ﬂo//10). @)
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time. In contrast to the log-prevalence ratio, the range of
the log-prevalence odds ratio is unconstrained by baseline
prevalence; instead, it ranges from —oo to co. The ratio is
symmetric with respect to how behaviors are defined. These
mathematical advantages come at the cost of lessened intu-
itive appeal because researchers and consumers of research
may find odds ratios more difficult to interpret than propor-
tionate changes. The difference between the log-prevalence
ratio and the log-prevalence odds ratio parallels that between
the log-relative risk ratio and the log-odds ratio effect sizes
used in other areas of meta-analysis (for further discussion
of the latter effect sizes, see Fleiss & Berlin, 2009).

Relationships among effect sizes

The five effect sizes represent different metrics for quanti-
fying change in a behavioral process, as modeled by an ARP.
The effect sizes are closely related to one another because
they are all defined in terms of ARP parameters. Under cer-
tain conditions, the effect sizes also become either approx-
imately or exactly equivalent, in which case it is reason-
able to directly compare estimates of those different effect
sizes. Understanding the circumstances under which the dif-
ferent effect sizes are measurement-comparable is important
for meta-analytic applications, which will often involve com-
bining information across studies that used different outcome
measurement procedures.

Figure 2 displays the inter-relationships among the effect
sizes, with arrows between two effect sizes indicating equal-
ity under the specified condition. If event duration is constant
across the baseline and treatment conditions (¢ = ), then
the log-prevalence ratio is equal to the log-incidence ratio
and the log-prevalence odds ratio reduces to the log-interim
ratio. Similarly, if the average interim time is constant across
conditions (dp = A), then the log-prevalence odds ratio is
equal to the log-duration ratio. If events have very short av-
erage duration relative to the average interim time, and this
is true under both conditions so that gy << Ag and u; << 4y,
then the log-prevalence ratio will be approximately equal to
the log-prevalence odds ratio and the log-incidence ratio will
be approximately equal to the log-interim ratio.

Effect size estimators

Thus far, I have described a within-session model for out-
come data generated by various measurement procedures,
posited a simple between-session model, and defined several
different effect size parameters for measuring changes in di-
rectly observed free-operant behavior. This section presents
methods for estimating those effect sizes based on data from
the different measurement procedures.

All of the estimators described in this section involve sam-
ple means and sample variances calculated by treatment con-
dition. I will use the following notation for these quanti-
ties. Let ng denote the number of observations made in the

baseline condition and n; denote the number of observations
made in the treatment condition. For data collected using
measurement procedure r = E,C, M, or P, let 3o denote the
sample mean outcome in the baseline condition and y| de-
note the sample mean outcome in the treatment condition.
Some of the estimators described below cannot be calculated
if the sample means are equal to zero. To account for this
possibility, I will use truncated sample means defined as

o _ 1% o )
4 K

for constants k(';,kT given below. Finally, let Sfo denote the
sample variance of the outcomes in the baseline condition
and Sfl denote the sample variance of the outcomes in the
treatment condition.

Several of the effect size estimators described in this sec-
tion can be viewed as special cases of the log-response ra-
tio, a well-known effect size used for meta-analysis in ecol-
ogy and other disciplines (Hedges, Gurevitch, & Curtis,
1999). For sample data collected using measurement pro-
cedure r = E,C, M, or P, a simple moment estimator for the
log-response ratio is given by

if >0
if =0

if 3;>0
if =0

R =) - 1n(5). (8)
with variance estimator
2 2
SrO Srl
2 2
no(3)  m(5)

Hedges et al. (1999) studied the distribution of this moment
estimator for the log response ratio under the assumption that
the raw data are normally distributed. However, the exact
distribution theory and approximations that they reported are
not applicable in the present context because the direct obser-
vation data under consideration are not normally distributed.
Furthermore, in some single-case studies, the within-phase
sample sizes ny and n; can be quite small. I therefore propose
an alternative estimator, based on a second-degree Taylor se-
ries approximation to the bias of the basic plug-in estimator:

ro_
R=

€))

R’ I (Ar)+ SEO 1 <Ar) S?l (10)
= In y — —1n y _——.
B T e O

Based on simulations across a variety of event duration and
interim time distributions, the bias-corrected estimators are
nearly unbiased and have comparable mean-squared error to
the simple moment estimators.” Use of the bias-corrected
form given in Equation (10) is therefore recommended, par-
ticularly when the design contains only a few measurements

Further details about the simulation design and findings can be
found in the supplementary materials for this article.
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u’ << A’

a)qﬁ
Log-prevalence

Log-incidence
ratio

Figure 2. Effect sizes for quantifying change in behavior

in each treatment condition. The variance of R’ can also be
estimated using V} from Equation (9).

The remainder of this section covers estimation methods
for each of the four main measurement procedures. Specif-
ically, I discuss estimators for the log-incidence ratio based
on event counting data, for the log-prevalence ratio and log-
prevalence odds ratio based on continuous recording data and
momentary time sampling data, and for the log-prevalence
odds ratio based on partial interval recording data. Empirical
applications of the proposed estimators are presented in later
sections.

Log-incidence ratio estimators based on event counting

Event counting data measures incidence directly. Assum-
ing that session length is held constant over the duration of
the study, the log-incidence ratio can therefore be estimated
using the bias-corrected response ratio estimator given in
Equation (10), with » = E and constants kg = 1/(2ngp) and
kf = 1/(2n;) to account for the possibility of sample means
equal to zero. An approximate (1 — @) confidence interval

for w¢ can be constructed as Rf + 242 \/VTIQ; , where z,); is
the (1 — @/2) quantile from a standard normal distribution
and V£ is calculated using Equation (9) with r = E.'"® For
ease of interpretation, researchers may find it easier to re-
port percentage changes in incidence, rather than the log-
incidence ratio. An approximate (1 — @) confidence inter-
val for the percentage change in incidence can be calcu-
lated by transforming the confidence interval for w¢, using

exp (RS 20 \[VE) - 1] x 100%.

Log-prevalence ratio estimators based on continuous
recording or momentary time sampling

Log-prevalence ratio estimators based on continuous
recording or momentary time sampling can be calculated

Log-prevalence
odds ratio

Log-interim

7

Log-duration
ratio

ratio

using Equation (10) with r = C or r = M. For con-
tinuous recording data, one can use kg = 1/(2Lny) and
k]C = 1/(2Ln;) as constants for adjusting sample mean out-
comes of zero; for momentary time sampling data, one can
use k) = 1/(2Kng) and k) = 1/(2Kn;), where K is the
number of intervals per observation session. Because both
types of data produce direct measurements of behavioral
prevalence, these estimators are approximately unbiased for
the log-prevalence ratio. A variance estimator is given by
Equation (9) with r = C or M, accordingly. Just as with
event counting data, researchers may find it easier to re-
port percentage changes in prevalence rather than the log-
prevalence ratio. An approximate (1 — ) confidence interval
for the percentage change in prevalence can be calculated as
100% [exp (R; + Zap2 \/V_Ig) - 1] forr = C or M.

Log-prevalence odds ratio estimators based on continu-
ous recording or momentary time sampling

The log-prevalence odds ratio i offers an alternative met-
ric for measuring differences or changes in prevalence, and
can be estimated naturally from continuous recording data or
momentary time sampling data. To account for the possibil-
ity of sample average prevalences at the ceiling of 100% or

10The proposed confidence interval is based on a large-sample
approximation, and therefore requires an adequate sample size in
each treatment condition. Based on simulation results, an approx-
imate 95% confidence interval has actual coverage rates of better
than 92% when n = 8 and 93% when n = 12. The approximate con-
fidence intervals for other effect size parameters, described below,
are based on similar large-sample approximations and have similar
coverage rates. Further details can be found in the supplementary
materials.
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the floor of 0%, a truncated mean is used; let

% %=0 4§ ¥=0
Yo = 1% 0<y,<1 V=49 0<y <1
-k §p=1 1-k ¥ =1

for r = C or M. The constants for correcting sample means
of zero or one are identical to those used with the log-
prevalence ratio: for continuous recording k¢ = 1/(2Ln,)
and for momentary time sampling, k¥ = 1/(2Kn,). Under
the assumptions of the stable phase model, a bias-corrected
estimator for y is then given by

S2,05 - 1)

N2 \2
2m (3) (1 -5)
S2,25 - 1)
~ 2 ~
20 (55) (1= 55)
for r = C or M. Based on simulations reported in the sup-
plementary materials, the bias-corrected estimators are ap-
proximately unbiased for the log-prevalence odds and have
comparable mean-squared error to a simple moment estima-

tor. An estimator for the approximate variance of the effect
size estimate is given by

5 =InG) - In(1-3)) -

—1n(5)6)+1n(1—)76)+ 5 (1D

V' = Sf() + Siz’l (12)
Lo (-w) @) (-

for r = C or M. An approximate (1 — @) confidence in-
terval for the log-prevalence odds ratio can be calculated as

12/2 * Zop2 /V(Z forr = C or M.

Log-prevalence odds ratio estimator based on partial in-
terval recording

As discussed previously, partial interval recording data
measures neither prevalence nor incidence. One conse-
quence of this is that the response ratio based on partial
interval recording data does not estimate any easily inter-
pretable parameter. Still, partial interval recording data can
provide some information about interpretable effect size pa-
rameters under certain assumptions about the behavior being
measured. For instance, S. A. Altmann and Wagner (1970)
proposed analyzing partial interval recording data under the
assumptions that event durations are negligible and interim
times follow an exponential distribution. These assumptions
lead to a point estimator for the average interim time, though
one that is quite sensitive to violations of the assumptions
(Fienberg, 1972). Pustejovsky (2013) described several dif-
ferent analytic approaches for partial interval recording data,
based on varying assumptions about the average event dura-
tions (ug,u;) and average interim times (Ao, 4;). These ap-
proaches lead to bounds (rather than point estimators) for

meaningful effect size parameters, yet point estimates will
be needed in order to apply conventional meta-analytic meth-
ods. Therefore, I now describe a set of assumptions that lead
to a point estimator for the log-prevalence odds ratio based
on partial interval recording data.

Assume that the average event duration is known a pri-
ori and that it is not affected by the intervention, so that
o = pp = p* for known constant p*.'! Further suppose
that the interim times in each treatment condition follow ex-
ponential distributions, so that G (t; /l,,) =1l-exp (—t/ /l,,) for
p = 0,1. It follows that the expected value of the sample
mean outcome from phase p is given by

~ A, €xp (—c//lp)

- (13)
w+Aa,

E(5) =1
A closed-form algebraic expression for 4, in terms of y]’,’ does
not exist (Corless, Gonnet, Hare, Knuth, & Jeffrey, 1996),
but a moment estimator for 4, can nonetheless be obtained
by replacing the expected value on left-hand side of Equation
(13) with the sample mean and then solving numerically for
A,. Define Ao and 1; as the solutions to the equations
Ao exp (—c/;lo) ~

. A exp (—c/;ll)
p* + Ao - -

<P
0 1=

/,t*+;11

Under the stated assumptions, a moment estimator for ¢ is
given by
JF =1log Ay —log 1. (14)

A bias-corrected estimator is available but its calculation is
quite cumbersome; I therefore forgo reporting it. An estima-
tor for the approximate variance of iJ” is given by

VP - S 3o + o)’
Y no(1 = 5[kt Ao + c(u + o)
.\ 82,8 + A1)
n(1 =32 p Ay + c(us + AP

5)

An approximate (1 — @) confidence interval for the log-

prevalence odds ratio can be calculated as 1,7/’3 * Za/2 4 /V(f .

The estimator ¢” has a limited sensitivity to the assumed
average event duration, as can be seen by evaluating it at ex-
treme values of u*. If u* is taken to be equal to zero, then
A, = —c/ log(l - y;’). The log-prevalence odds ratio esti-
mator will therefore be equal to the complementary log-log
ratio

log[—log(l —jzf)]—log[—log(l —y{)’)], (16)

Note that under the assumption that the average event duration
does not change, the log-prevalence odds ratio is equivalent to the
log-incidence ratio.
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which is equivalent to the estimator proposed by S. A. Alt-
mann and Wagner (1970). At the other extreme, for large
values of u*, the estimator will be approximately equal to the
log-odds ratio evaluated using the sample PIR proportions.
In other words, J/* approaches

n(57)-mn(1-57)-In(5) +m(1-55) a7

as u* increases. For intermediate values of u*, J* will always
lie in between (16) and (17). Consequently, the proposed es-
timator will often be fairly insensitive to the exact value of
(¥, and sensitivity analysis can be conducted by comparing
results based on an assumed value of u* = 0 to those based
on assuming a very large value for u* (e.g., u* = 1000 s).

Application: Romaniuk et al. (2002)

This section demonstrates the use of the proposed effect
size estimators for analyzing multiple cases from a single
study. The results based on measurement-comparable effect
sizes are compared to those based on two of the most com-
mon effect size measures in single-case research: the within-
case standardized mean difference (SMD, Busk & Serlin,
1992) and the percentage of non-overlapping data (PND,
Scruggs et al., 1987). The latter measure is calculated as the
proportion of outcome measurements in the treatment condi-
tion that are lower than the minimum outcome measurement
during the baseline condition.

Romaniuk et al. (2002) studied the effects of providing
choice between activities on the problem behavior of chil-
dren with disabilities. A key research question was whether
the treatment was differentially effective for children whose
problem behavior was maintained by escape versus by at-
tention. Prior assessment identified three cases with escape-
maintained problem behavior and three cases with attention-
maintained problem behavior. For five cases, the investiga-
tors measured children’s problem behavior using continuous
recording with observation sessions L = 5 minutes in length.
For a sixth case (called “Riley”), the investigators measured
behavior using event counting because the child displayed
behaviors that had very brief duration. For all six cases,
treatment reversal designs with either three or five reversals
were used to assess the effect of providing choice between
activities (versus a no-choice condition). Table 2 reports the
outcome measurement procedure used for each case along
with summary statistics by treatment condition.

In order to synthesize all six cases, an effect size is needed
that permits comparisons between the five cases measured
using continuous recording and the sixth case measured us-
ing event counting; the ARP model provides a basis for es-
tablishing that comparability. I assume that the average du-
ration of Riley’s problem behaviors was unaffected by the in-
tervention (1o = 1), so that a log-incidence ratio estimated
from event counting data is on a comparable scale to that of

a log-prevalence ratio estimated from continuous recording.
The assumption seems reasonable because Riley’s problem
behaviors were all very brief, discrete instances that would
not be meaningfully altered by intervention.

Table 3 reports estimated log-prevalence ratios Rg and

standard errors /Vg, calculated according to Equations (10)

and (9), respectively, for the five cases measured using con-
tinuous recording. The table also reports Riley’s estimated
log-incidence ratio Rg and corresponding standard error.'?
For the three cases with escape-maintained behavior, the es-
timated log-prevalence ratios are large and negative, ranging
from -0.96 to -2.39; for these cases, providing choice-making
opportunites greatly reduces the prevalence of problem be-
haviors. A fixed-effects meta-analysis of the three cases pro-
vides a succinct summary of the average effect of the treat-
ment on these three cases and is reported in the penultimate
row of the table.!? The average log-prevalence ratio for cases
with escape-maintained behavior is -1.22, with an approxi-
mate 95% CI of [-1.48, -0.95]; the CI corresponds to a re-
duction of between 61% and 77% in the prevalence of prob-
lem behaviors for the children with escape-maintained be-
havior. In contrast, the estimated log-prevalence ratios for
the three cases with attention-maintained behavior are mod-
erately positive, ranging from 0.12 to 0.31. Based on a fixed-
effects meta-analysis (reported in the final row of the table),
the average log-prevalence ratio for these cases is 0.23, with
an approximate 95% CI of [0.11,0.34] corresponding to in-
creases in the prevalence of problem behavior of between
13% and 40%.

An alternative effect size metric that could be applied in
this example is the log-prevalence odds ratio. Table 3 also
reports log-prevalence odds ratios estimates (/Afg and associ-

ated standard errors ,/Vf for the five cases measured us-

ing continuous recording. For the case measured using event
counting, the estimated log-incidence ratio is used, which is
equivalent to the log-prevalence odds ratio under the assump-
tions that the treatment does not alter average event duration
(1o = p1) and that the average event durations are very short.
Again, this assumption seems reasonable given the character
of the Riley’s behaviors; in fact, the short duration of her
behaviors was the motivation for using event counting rather
than continuous recording (Romaniuk et al., 2002, p. 351).
For four of the five cases measured using continuous
recording, the relative magnitudes of the log-prevalence odds
ratio estimates are comparable to the log-prevalence esti-
mates. The exception is Christy, whose log-prevalence odds
ratio is much larger than the other two cases with attention-

12All of the effect size estimates and standard errors can be cal-
culated from the summary statistics reported in Table 2.

BA fixed-effects meta-analysis is used due to the small number
of cases. I used the metafor package in R (Viechtbauer, 2010) for
calculation.
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Table 2
Summary statistics for Romaniuk et al. (2002)
No Choice Choice
Outcome _ ) _ 5
Case measure Yo SO no Y1 S 1 ny
Brooke C 0.70 0.079 14 0.06 0.005 11
Gary C 0.69 0.048 16 026 0.048 16
Maggie C 0.64 0.053 16 0.21 0.010 8
Christy C 071 0.035 15 0.89 0.011 10
Rick C 0.63 0.064 15 071 0.037 14
Riley E 762 7949 21 103.7 5472 12
Table 3
Effect size estimates for Romaniuk et al. (2002)
Outcome  Behavior A —
Case measure  function Ry Ve v ‘/V_‘” SMD Vsup  PND
Brooke C escape 239 037 -350 052 295 0.59 1.00
Gary C escape -096 023 -1.81 038 -1.95 043 0.0
, Maggie C escape -1.09 0.19 -1.86 032 -2.16 0.54  0.38
Christy C attention 022 0.08 1.13 040 1.12 0.44  0.00
Rick C attention 0.12 0.13 037 038 0.36 037  0.00
Riley E attention 031 0.10 031 0.10 1.03 038  0.00
FE meta-analvsis escape -1.22 013 -2.14 022 -2.26 0.29
y attention 023 0.06 036 0.10 0.81 0.23

maintained problem behavior, even while her log-prevalence
ratio is intermediate between those of the other two cases.
This discrepancy is due to the fact that the two effect size
metrics are less comparable for prevalences greater than 0.5.
Christy’s average prevalence is fairly high in both the no-
choice (¥ = 71%) and the choice conditions (j; = 89%),
leading to a divergence between the magnitude of the two
metrics.

In this example, the log-prevalence odds ratio and the log-
prevalence ratio lead to much the same substantive conclu-
sions. Table 3 also reports the SMD effect size and corre-
sponding standard error (the latter is labeled vVsyp). For
cases with escape-maintained problem behavior, a fixed-
effects meta-analysis based on the d effect sizes leads
to an average effect estimate of -2.26 (approximate 95%
CL: [-2.84, -1.68]); the average effect size for cases with
attention-maintained behavior is 0.81 (approximate 95% CI:
[0.36,1.25]). At first glance, the magnitude of the SMDs ap-
pears remarkably similar to that of the log-prevalence odds
ratios (&2) for all cases but Riley. However, the interpretation
is different and more problematic because continuous record-
ing and event counting do not produce interval-scale outcome
measurements. To illustrate the problem, consider the hypo-
thetical scenario in which the treatment effect is the same
for all participants and is equal to the lower CI bound for
escape-maintained problem behavior, that is, S MD = —2.84.
Based on this information, the level of the outcome during

treatment would be predicted as yp — 2.84 x Sy. For four
of the six cases in this example, the resulting prediction is
a negative number, yet it is impossible to have a negative
proportion of time or a negative number of events. The log-
prevalence ratio and log-prevalence odds ratios do not lead to
such impossible predictions, because both measure change in
proportionate terms.

The final column of Table 3 reports the PND for each case;
two problems with this effect size are apparent. First, PND
is zero for all three cases with attention-maintained behavior,
concealing the fact that the treatment appears to be actively
harmful (rather than simply ineffective) and hiding any vari-
ation in the magnitude of effects for these cases. Second,
there is no way to assess the sampling uncertainty of the
PND statistic, which prevents the use of fixed-effects meta-
analysis and other conventional techniques for synthesizing
multiple effect sizes. In contrast, the log-prevalence ratios
and log-prevalence odds ratios can be used in conventional
meta-analysis procedures and remain meaningful measures
of treatment effect magnitude even when effects are not ben-
eficial.

Application: Shogren, Faggella-Luby, Bae, & Wehmeyer
(2004)

The example presented in the previous section is based on
one study included in the systematic review by Shogren et
al. (2004). This section presents a complete meta-analysis of
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all studies included in the review. In the original systematic
review, the authors used PND and other non-overlap mea-
sures as effect size metrics; they used non-parametric tests
to examined moderators of the effect sizes (Shogren et al.,
2004, Tables 3 and 4). These same data were also analyzed
by Van den Noortgate and Onghena (2008) using SMD effect
sizes and multi-level meta-analytic models.

Recall from Table 1 that the studies used a variety of
measurement procedures, including event counting, contin-
uous recording, momentary time sampling, and partial in-
terval recording.'* Effect sizes based on each procedure in-
volve distinct assumptions, which I detail separately. I ex-
clude from the analysis the three studies (including 4 cases)
that used idiosyncratic measurement procedures (Bambara,
Koger, Katzer, & Davenport, 1995; Cole & Levinson, 2002;
Dibley & Lim, 1999), from which measurement-comparable
effect sizes cannot be derived. I also excluded one study
with a single case (Peterson, Caniglia, & Royster, 2001) that
reported a functional assessment but did not use an evalu-
ation design. The remaining 9 studies, including a total of
27 cases, are used in the meta-analysis; the number of cases
per study ranges from 1 to 6. Across studies and cases, the
number of observations per condition ranged from 3 to 21,
with a median of 11.

Effect size assumptions

I use the log-prevalence odds ratio as the effect size metric
because the majority of included studies used interval record-
ing methods. For cases measured using continuous record-
ing and momentary time sampling, effect size estimates were
calculated using Y/$ and ¥, respectively, as given in Equa-
tion (11). For cases measured using event counting, I assume
that the intervention does not alter the mean event duration
(u° = u") and that the mean event duration is close to zero,
so that proportionate changes in incidence are approximately
equal to proportionate changes in interim times. Under these
assumptions, effect sizes for cases measured by event count-
ing are in the same metric as the log-prevalence odds ratio,
and are estimated using Rg as given in Equation (10). For
cases measured using interval recording, I assume that the
average event duration in each phase is equal to y* = 10
s and that interim times are exponentially distributed. To-
gether, these assumptions imply that the log-prevalence odds
ratio can be estimated using ¢/ as given in Equation (14).

Meta-analytic model

Having described the underlying assumptions for the esti-
mated effect sizes, I now describe the modeling assumptions
I use to meta-analyze those effect sizes. Following Van den
Noortgate and Onghena (2008), I adopt a multilevel random-
effects model in which case-level effect sizes from the same
study are allowed to be correlated. Let Y;; denote the effect
size estimate for case j from study i, with estimated sampling

variance V;;. I consider two multi-level models for these ef-
fect sizes. Model 1 contains no predictors:

Yij=ﬂ+ui+vij+eij, (18)

where 8 is the grand-average effect size across cases and
studies, u; is a study-level deviation from the grand-average
effect size, v;; is a case-level deviation from the study-level
average effect size for study i, and ¢; is the sampling er-
ror of the estimated effect size for case j in study i. I as-
sume that all errors are mutually independent and normally
distributed with means of zero and variances Var (i;) = 72
, Var (vi j) = o2, and Var (E,' j) = V;;. Here, 72 captures
between-study variation in average effect sizes while o cap-
tures variation in effect sizes across cases from the same
study, with the latter source of variation treated as constant
across studies. For the effect size estimators under considera-
tion, the assumption that €; is normally distributed will hold
only approximately, given sufficiently large sample sizes for
each case and treatment condition.'> Reliance on such ap-
proximations is conventional in random effect meta-analysis
of other types of effect sizes (Hedges & Vevea, 1998).
Again following Van den Noortgate and Onghena (2008),
the second model adds two moderators of effect size: an in-
dicator for the case’s gender and an indicator for the type of
choice-making used in the study (choice between alternative
activities versus choice of task order).'® Model 2 is then:

Yij = Bo+P1 (Male);;j+ B3 (TaskOrder);j+u; +v;;j+€;, (19)

with the error terms defined as in the first model. I estimate
the variance components 7> and o> and the B-coefficients via
restricted maximum likelihood.

Finally, it is useful to compare the results based on the log-
prevalence odds ratio to other alternative effect size estima-
tors. I therefore replicate the approach of Van den Noortgate
and Onghena (2008) by estimating Model 2 using within-
case SMD effect sizes. It is not possible to estimate a multi-
level meta-analytic model on PND effect sizes, due to the

“For one case from a study by Kern, Mantegna, Vorndran,
Bailin, and Hilt (2001), a whole interval recording procedure was
used to measure task engagement. For purposes of calculating ef-
fect sizes, I re-coded the data as a partial interval recording measure
of task dis-engagement.

15Based on simulation results reported in the supplementary ma-
terials, 95% confidence intervals have close to nominal coverage
when based on samples with at least 8 observations per condition;
this may be taken as indirect evidence that the sampling distribu-
tion of the point estimators is very approximately normal. Of the 27
cases included in the meta-analysis, 8 cases have at least one con-
dition with less than eight observations. Despite the small sample
sizes, I choose to retain these cases in the meta-analysis because it
seems more important to synthesize all relevant data than to select
studies to satisfy the technical criteria of approximate normality.

6 More extensive description of these characteristics can be
found in Shogren et al. (2004).



14 PUSTEJOVSKY

lack of valid sampling variance estimates. Instead, I estimate
a simple linear regression model with the same moderators
as Model 2; I report robust standard errors, clustered at the
study level (Hedges, Tipton, & Johnson, 2010). Because an
increased PND corresponds to a decrease in behavior, I re-
verse the signs of the estimated coefficients in order to main-
tain comparability with the other effect size metrics.

Results

Figure 3 displays a forest plot of the estimated effect sizes.
Based on Model 1, the average log-prevalence odds ratio is
estimated as B = —1.51 (95% CI: [-2.11, -0.91]). Odds ra-
tios can be difficult to interpret; as an aid to interpretation,
it is helpful to provide translations into proportionate reduc-
tions in prevalence at benchmark levels of baseline preva-
lence.!” For a baseline prevalence of ¢0 = 0.30, the CI for
the average log-prevalence odds ratio corresponds to a re-
duction of between 51% and 83%; for a baseline prevalence
of ° = 0.50, the corresponding reduction is between 43%
and 78%. The estimated between-study variance is small
(#*> = 0.06) while the estimated within-study variance is
fairly large (6> = 1.31); total heterogeneity, including both
between- and within-study variation, is therefore large. For
an average log-prevalence odds ratio of -1.51, total hetero-
geneity of 72 + o> = 1.37 implies that a quarter of the popu-
lation has log-prevalence odds ratios of less than -2.30 (a re-
duction of more than 81% for baseline prevalence ¢° = 0.50)
while another quarter of the population has log-prevalence
odds ratios of more than -0.72 (a reduction of less than 35%
for baseline prevalence ¢° = 0.50).

Table 4 reports the results of fitting Model 2 to the esti-
mated log-prevalence odds ratios, as well as the results of
comparable models for the SMD and PND. Based on the
log-prevalence odds ratio, the treatment is estimated to be
more effective (i.e., to produce greater reductions in prob-
lem behavior, Bl = —0.21, 95% CI: [-1.45,1.03]) for male
children than for females; however, the difference is esti-
mated very imprecisely and is far from statistically signifi-
cant. The treatment is estimated to be more effective when
participants are allowed to choose the order of tasks versus
having a choice between alternative activities (8, = —0.50,
95% CI: [-1.74,0.75]), though the difference is also far from
statistically significant.

The statistical non-significance of the moderators is con-
sistent with the models based on SMD and PND effect sizes.
However, there is some inconsistency regarding the direction
of the effects. In the models based on SMD and PND ef-
fect sizes, the treatment is estimated to be less efficacious for
males than for females. Though this inconsistency may be
due in part to sampling variation, it nonetheless illustrates
how the measurement-comparable effect sizes proposed in
this paper may lead to different inferences than other, more
widely used effect sizes.

A useful approach to checking the soundness of these
meta-analytic models is to calculate the predicted level of
the outcome under the treatment condition, based on the
baseline scores and the fitted effect size values from Model
2. In the model based on SMD effect sizes, the predicted
level of the outcome under treatment would be calculated as
Yo + SMD xS, where S MD is a fitted value from Model 2.
For 9 out of the 27 cases, the predicted level of the outcome
is negative. For outcomes that are calculated as proportions
or counts, such predictions are not sensible, and suggest that
the SMD is an inappropriate metric for the types of outcome
measurements used in these studies. In contrast, similar cal-
culations based on the log-prevalence odds ratio metric pro-
duce predictions that remain within the range of the scale.

Discussion

I have presented a model for synthesizing case-level esti-
mates of the effect of providing choice-making opportunities
on the prevalence odds of individuals’ problem behavior, us-
ing data from studies identified by Shogren et al. (2004). In
this application, an advantage of using the effect sizes that
I have proposed is that the meta-analytic results are inter-
pretable in terms of clear behavioral constructs. For example,
the average treatment effect estimate can be translated into a
percentage reduction in the prevalence of problem behavior.
In contrast, it is difficult to interpret an average of PND or
SMD effect sizes because their magnitudes may depend on
the measurement procedure used.

A major feature of these data is the large number of
cases measured using partial interval recording, which is not
a direct measure of prevalence. Strong modeling assump-
tions are necessary to justify the proposed measurement-
comparable effect size estimates based on interval recording
data. The results should be interpreted in light of these as-
sumptions, and with considerable caution.

Further analyses would be possible if a larger set of stud-
ies could be identified that included a greater variety of mea-
surement methods. Among those identified by Shogren et
al. (2004), only one third of the cases used a measurement
method other than interval recording. As a result, there is
insufficient data to examine whether there are differences in
average effect sizes for cases measured by different methods.
However, it may be possible to carry out such an analysis
in other applications, and meta-analysts are encouraged to
do so. Although the goal of using measurement-comparable
effect sizes is to reduce irrelevant operational heterogeneity
and put different measurement procedures on a comparable

7For baseline prevalence ¢° and log-prevalence odds ratio i, the
proportionate reduction in prevalence is given by

expy)

o\ _ 1 _ _
exp () =1= =5 [1 - exp)]
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approximate 95% confidence intervals for the case-level effect sizes. The color of the symbol corresponds to the measurement
method used. Green = continuous recording; blue = momentary time sampling; red = event counting; yellow = interval

recording.

basis, it is prudent to test whether the exercise has succeeded.
Residual differences between measurement methods may in-
dicate violation of modeling assumptions, which can in turn
lead the analyst towards more refined assumptions or signal
caution in the interpretation of effect sizes averaged across
measurement procedures.

General discussion

I have presented an alternating renewal process model
for free-operant behavior that can be used to describe data
collected via several common measurement procedures. I
used the model to define measurement-comparable effect
size metrics and proposed estimators that are applicable un-
der a simple between-session model. Several of the effect
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Table 4
Random-effects meta-analysis of Shogren et al. (2004) data
Log-POR SMD PND
Parameter Est. SE Est. SE Est. SE
B-coeflicients
Intercept (By) -1.19 046 -1.57 0.56 -0.56  0.10
Male (8,) -0.21  0.54 0.05 0.58 0.26 0.13
Task order (5,) -0.50 0.54 -0.26  0.67 -0.20  0.21
Variance components
Between-study (72)  0.00 0.32
Within-study (o2) 1.42 1.30

sizes are closely related to the log-response ratio, a well-
known effect size used in other areas of meta-analysis. Data
based on partial interval recording procedures present spe-
cial difficulties because they cannot be interpreted as direct
measurements of either prevalence or incidence. I have pro-
posed one approach to estimating measurement-comparable
effect sizes based on partial interval recording data, involv-
ing rather strong modeling assumptions that may be difficult
to verify in practice. Elsewhere I have suggested other an-
alytic methods that are based on somewhat weaker assump-
tions (Pustejovsky, 2013), but these approaches yield bounds
instead of point estimates, and are therefore more difficult to
meta-analyze.

A working meta-analyst, interested in synthesizing ev-
idence from single-case studies of free-operant behavior,
might sensibly question the need for such an elaborate model
to define effect sizes. I see three advantages to this model.
First, a model that captures the essential features of the out-
come measurement procedures improves the interpretability
of effect sizes defined with respect to it. The effect sizes
that I have proposed are defined in terms of prevalence and
incidence, both readily understood aspects of a behavior. In
contrast, other effect size proposals such as the within-case
SMD and the PND do not correspond closely with clear be-
havioral constructs.

Second, a measurement-comparability model is all the
more necessary when dealing with measurements that are
difficult to interpret. Given that interval recording procedures
are widely used for measurement of free-operant behavior,
meta-analytic methods for single-case research cannot sim-
ply ignore them. In the Shogren et al. (2004) application,
interval recording was used with two thirds of the cases to
be synthesized. Taking a naive approach by treating inter-
val recording data just as other data would compromise the
construct validity of the synthesis. On the other hand, re-
stricting the meta-analysis to cases measured using proce-
dures other than interval recording would drastically reduce
the sample size and possibly compromise external validity.
Methods are therefore needed that retain cases measured us-
ing interval recording while also making use of interpretable,

measurement-comparable effect sizes.

Third, use of a measurement-comparability model has
prospective implications for research practice. Effect sizes
defined under such a model allow meta-analysts to formulate
research questions in more precise terms, such as whether
an intervention affects the prevalence of a behavior, the inci-
dence of a behavior, or both. As previously noted, it will
rarely be possible to estimate theoretically interesting ef-
fect sizes such as the log-duration ratio and log-interim ratio
based only on data collected from published graphs. How-
ever, such limitations do not pertain to primary researchers
planning future studies; data collection procedures and re-
porting practices could certainly be adjusted so that effects
on event duration and interim time could be separately esti-
mated.

The most widely used effect size metrics for meta-analysis
of single-case designs, including the within-case SMD and
the PND, do not adequately account for the comparability
of effect sizes across studies that use different measurement
procedures, yet they suffer from similar drawbacks as the
measurement-comparable effect sizes that I have proposed.
The within-case SMD is premised on between-session mod-
eling assumptions that are largely parallel to those on which
I have relied, including lack of auto-correlation and means
that are stable within phases (Busk & Serlin, 1992). Sim-
ilarly, the PND is known to be inappropriate when there
are within-phase trends, and the potential effect of auto-
correlation on PND is unknown (Shadish & Rindskopf,
2007). Given these common limitations, together with the
advantages of measurement-comparable effect sizes that I
have noted, I recommend that meta-analysts consider using
the proposed measurement-comparable effect sizes for syn-
thesizing single-case studies of free-operant behavior, rather
than the more widely used SMD or PND effect sizes.'3

"$However, approaches other than the SMD and PND may of-
fer some advantage over the methods proposed in this paper. Sev-
eral recently proposed effect size metrics and analytic methods can
handle data that display within-phase trends and auto-correlation,
but these approaches have yet to be widely applied (e.g., Maggin,
Swaminathan, et al., 2011; Parker, Vannest, Davis, & Sauber, 2011;
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Choosing a measurement-comparable effect size

Several factors are relevant when choosing an effect
size metric to use for summarizing the results of a single-
case study or meta-analyzing the results of several studies.
Clearly, the choice of a summary effect size will be limited
to those that can be estimated from the available data. If a
set of cases or studies were measured using different proce-
dures, then it may be necessary to use several different effect
sizes and to evaluate whether the those effect sizes are di-
rectly comparable. For example, if some studies measure in-
cidence with an event counting procedure while the remain-
der measure prevalence with continuous recording, each sub-
set of studies might first be summarized and meta-analyzed
separately. The meta-analyst could then assess whether it
is reasonable to assume that average event durations can be
treated as constant for the studies that use event counting, in
which case a combined meta-analysis would be warranted.

If the preponderance of included studies focus on preva-
lence, then the meta-analyst must further determine whether
to use the log-prevalence ratio or the log-prevalence odds
ratio. In this circumstance, it may be possible to choose
an effect size metric by comparing the empirical fit of the
meta-analytic models applied to each effect size, with pref-
erence given to the effect size metric that exhibits less het-
erogeneity. Engels, Schmid, Terrin, Olkin, and Lau (2000)
used such an approach for meta-analysis of medical studies
with binary outcomes (see also Deeks, 2002). These authors
found that it was often difficult to distinguish between mod-
els based on risk ratios versus those based on odds ratios,
particularly when effects were small and the number of stud-
ies was limited. However, single-case meta-analyses might
have comparatively greater power for determining the more
homogeneous effect size metric, due both to the availability
of case-level data and the potential for very large effects on
prevalence.

Limitations and Extensions

The models and methods that I have presented have sev-
eral limitations that should be noted, including those related
to the within-session model, between-session model, effect
sizes, and meta-analytic methods. I address each of these in
turn, while also noting potential areas for future research.

The equilibrium alternating renewal process model for de-
scribing observed behavior is general in the sense that it is
not limited to specific parametric distributions for the event
durations and interim times. Still, the assumption that the
process is in equilibrium might not be entirely realistic, par-
ticularly when observation sessions coincide with the start of
some other event (such as the beginning of math class) or en-
trance into a novel setting (such as a therapist’s office). Also,
the model does not account for relationships between behav-
ioral events and environmental contingencies, which are of

central interest in some behavior-analytic theories. Both of
these criticisms are quite reasonable, but one must also con-
sider that the available data (in the form of published graphs)
do not provide sufficient information to model such intra-
session dynamics. Without the equilibrium assumption, all
of the measurement procedures that [ have described become
somewhat sensitive to initial conditions and to the length of
observation sessions—details about which the meta-analyst
will have little or no information. The equilibrium assump-
tion implies that the process is uniform over the course of a
session, which is consistent with how the data generated by
various measurement procedures are typically summarized
and reported.

Next, the proposed measurement-comparable effect sizes
are defined under the simplest possible model for describing
change in behavior over time. The stable-phase model allows
for neither trends in the process over time nor for serial de-
pendence of repeated measurements, both of which are prime
concerns in quantitative single-case research methodology
(Horner et al., 2012; Maggin, Swaminathan, et al., 2011;
Wolery et al., 2010). Extensions to the between-session
model are possible and will be explored in further research.
One possible extension is to introduce auto-correlation into
the model, but doing so adds several layers of complica-
tion because the measurement errors in an alternating re-
newal process are non-normal. Consequently, there are sev-
eral different ways of formulating auto-correlation models,
and further research is needed to understand which are rea-
sonable. Moreover, practically all previous research on auto-
correlation in single-case time series has been premised on
the assumption that the measurements are interval scaled
with normally distributed errors. If the modeling approach in
this paper is reasonable, then much of the previous research
on the presence of auto-correlation in single-case studies
may need to be re-examined.

There are two shortcomings to the effect size metrics that
I have described. The goal of some behavioral interventions
is complete elimination of an undesirable behavior, and a re-
searcher or meta-analyst may be interested in the probabil-
ity that elimination will be achieved. The effect size esti-
mators that I have proposed, which make use of truncated
means, do not distinguish between complete elimination of
a behavior versus reduction to very low prevalence or inci-
dence. If such a distinction is of primary interest, special-
ized meta-analytic models and methods may be needed. The
other short-coming is that the proposed effect sizes apply to
individual cases, and are not useful for syntheses contain-
ing both single-case and between-subjects research designs.
Hedges, Pustejovsky, and Shadish (2012, 2013) have pro-
posed design-comparable effect sizes that are on the same

Swaminathan, Rogers, & Horner, 2014). Further methodological
research is warranted to understand the relative strengths and weak-
nesses of these new proposals.
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scale as effect sizes identified by between-subjects designs,
but only for standardized mean differences. A similar ap-
proach could be taken for defining design-comparable effect
sizes for the ARP model, and this remains a topic for future
research.

A final, important limitation of this work is that it has
yet to be fully vetted by applied researchers with experi-
ence measuring free-operant behavior. Researchers who are
familiar with the profiles of the behaviors being measured
will be in a better position to judge the plausibility and util-
ity of the key assumptions. Also, a better understanding
of how researchers choose between alternative measurement
procedures would be helpful in assessing whether and un-
der what circumstances the assumptions regarding those pro-
cedures are reasonable. This final limitation highlights the
need for greater collaboration between applied single-case
researchers and statistical methodologists, as Campbell and
Herzinger (2010) and others have argued.
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Appendix
Expected values of summary measurements
This Appendix provides further mathematical details about
how the summary measurements generated by event count-
ing, continuous recording, momentary time sampling, and
partial interval recording are related to the behavior stream
and ARP model.

Recall that the behavior stream consists of event du-
rations Ay, A,, Az, ... and interim times By, By, B,, B3, .... For
notational convenience, let Ay = 0. Define N(t) as the num-
ber of events that have begun by time ¢. Formally, this is the
counting process

N(t) = i 1
w=1

where I() denotes the indicator function, such that I1(Q) = 1
if Q is true, and 1(Q) = 0 if Q is false. Finally, define

w—1

Z(Av +B) <t

v=0

s

00 w-1
Ziy= Y 1|0<t- > (A +B) < Ayl
w=1 v=0

so that Z(¢) = 1 indicates that an event is occurring at time ¢
and Z(#) = 0 indicates that an event is not occurring at time
t. With this notation established, the summary measurements
can be defined precisely in terms of the behavior stream data
and their expectations can be derived from the assumptions
of the ARP.

The summary measurement generated by event
counting can be defined formally as

YE = N(L),

where L is the length of the observation session. Under the
ARP, the fact that E(YE) = (L as given in Equation (1) is
a consequence of Blackwell’s Renewal Theorem (Kulkarni,
2010, p. 360).

The summary measurement generated by continuous
recording can be defined formally as

Y¢ = 1 f ' Z(1)dt
L J ’

Cox (1962, p. 101) demonstrates that E (Yc) = ¢, as given in
Equation (2).

In momentary time sampling, the observer notes the
presence or absence of a behavior at K moments in time.

The observations for these moments correspond to the points
Z(L/K),Z(2L/K),Z(3L/K),...,,Z(KL/K). The summary

measurement generated by momentary time sampling can
therefore be written as

K
YM = % ZZ(kL/K).

By the assumption that the process is in equilibrium,
E[Z(t)] = ¢ for any fixed ¢, and so E(YM ) = ¢, as given
in Equation (3).

In partial interval recording, the observer scores each
interval according to whether the behavior is present at any
point during the active interval. Let U denote the score from
interval k; formally,

Uk =I(0< fCZ(t+(k— I)L/K)dt)
0

for k = 1,...,K. The summary measurement from partial
interval recording is then

Yf = lZK:Uk.
Kk:l

Rogosa and Ghandour (1991) provided the expectation of a
partial interval recording summary measurement for the spe-
cial case of an alternating Poisson process, in which both A;
and B follow exponential distributions. Here I derive the ex-
pectation under the more general ARP model. First consider
that the residual interim time at time-point ¢ can be expressed

as
N()

R(t) = Z(Au +B)—t.
u=0

In an equilibrium ARP, the conditional distribution of the
residual interim time, given that Z(¢) = 0, is

Pr(R(?) < x|Z(t) = 0) = % f ' [1 - G(t; V)] dt
0

(Kulkarni, 2010, Thm. 9.17). Let s, = (k — 1)L/K be the
time at which interval k begins, so that the state of process
at the start of interval k is Z (s;). Conditioning on the initial
state, the expectation of Uy is

1 .
E(U,) = Pr| 0 Z 71iVA =
U0 ZO r[ <j: (5 +1) t' (50 = a

=1 =) Pr[R(se) <c|Z(sp) =0]+¢

=§f-[1—G(t;/l)]dt+¢,
0

as given in Equation (4).

X Pr([Z (s;) = a]
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